

Welcome to Grole’s documentation!

Contents:

	Install

	Tutorial
	Getting started

	Registering routes

	Handling requests

	Responding

	Helpers

	Examples

	Grole API

Grole is a python (3.5+) nano web framework based on asyncio. It’s goals are to be simple, embedable (single file and standard library only) and easy to use. The authors intention is that it should support standing up quick and dirty web based APIs.

It’s loosely based on bottle and flask, but unlike them does not require a WSGI capable server to handle more than one request at once. Sanic is similar, but it does not meet the embedable use-case.

A grole is a multi-spouted drinking vessel (https://en.wikipedia.org/wiki/Grole), which harks to this modules bottle/flask routes but with the ability to serve multiple drinkers at once!

Indices and tables

	Index

	Module Index

	Search Page

Install

Either download grole.py [https://github.com/witchard/grole/raw/master/grole.py] directly from github and place in your project folder, or pip3 install grole.

Tutorial

Getting started

By default, grole will run a simple static file server in the current directory. To use this simply execute grole.py, or run python -m grole.

To serve your own functions, you first need a Grole object. The constructor accepts a env variable which is passed to your handler functions such that you can share state between them. Logging is done by the python logging module, if you want logging then run logging.basicConfig(level=logging.INFO).

Once you have setup handler functions for your web API, you can then launch the server with Grole.run(). This takes the host and port to serve on and does not return until interrupted.

Registering routes

Routes are registered to a Grole object by decorating a function with the Grole.route() decorator. The decorator function takes a regular expression as the path to match, an array of HTTP methods (GET, POST, etc), and whether you want this function in the API doc. Docstrings of functions in the API doc are available through env[‘doc’] within the handler function.

The order in which routes are registered is the order in which they will be tested when searching for a handler for a specific request.

Handling requests

Decorated functions registered to a Grole object with Grole.route() will be called if their associated regular expression matches that of a request (as well as the HTTP method).

A registered handler is given the following objects:

	env: The env dictionary that the Grole object was constructed with

	req: A Request object containing the full details of the request. The re.MatchObject from the path match is also added in as req.match.

We now know enough to make a simple web API. An example of how to return the hex value when visiting /<inteter> is shown below:

from grole import Grole

app = Grole()

@app.route('/(\d+)')
def tohex(env, req):
 return hex(int(req.match.group(1)))

app.run()

If you need to do something async within your handler, e.g. access a database using aioodbc then simply declare your handler as async and await as needed.

Responding

In-built python types returned by registered request handlers are automatically converted into 200 OK HTTP responses. The following mappings apply:

	bytes: Sent directly with content type text/plain

	string: Encoded as bytes and sent with content type text/html

	others: Encoded as json and sent with content type application/json

Finer grained control of the response data can be achieved using ResponseBody or one of it’s children. These allow for overriding of the content type. The following are available:

	ResponseBody: bytes based response

	ResponseString: string based response

	ResponseJSON: json encoded response

	ResponseFile: read a file to send as response

Control of the headers in the response can be achieved by returning a Response object. This allows for sending responses other than 200 OK, for example.

Helpers

Various helper functions are provided to simplify common operations:

	serve_static(): Serve static files under a directory. Optionally provide simple directory indexes.

	serve_doc(): Serve API documentation (docstrings) of registered request handlers using a simple plain text format.

Examples

from grole import Grole

app = Grole()

@app.route('/(.*)?')
def index(env, req):
 name = req.match.group(1) or 'World'
 return 'Hello, {}!'.format(name)

app.run()

Run this script and then point your browser at http://localhost:1234/.

Grole also has an inbuilt simple file server which will serve all the files in a directory. Just run grole.py or python -m grole. This supports the following command line arguments:

	–address - The address to listen on, empty string for any address

	–port - The port to listen on

	–directory - The directory to serve

	–noindex - Do not show file indexes

	–verbose - Use verbose logging (level=DEBUG)

	–quiet - Use quiet logging (level=ERROR)

Further examples can be found within the examples [https://github.com/witchard/grole/tree/master/examples] folder on github.

Grole API

Grole is a python (3.5+) nano web framework based on asyncio. It’s goals are to be simple, embedable (single file and standard library only) and easy to use.

	
class grole.Grole(env={})

	Bases: object

A Grole Webserver

	
__init__(env={})

	Initialise a server

env is passed to request handlers to provide shared state.
Note, env by default contains doc which is populated from
registered route docstrings.

	
route(path_regex, methods=['GET'], doc=True)

	Decorator to register a handler

	Parameters:

	
	path_regex: Request path regex to match against for running the handler

	methods: HTTP methods to use this handler for

	doc: Add to internal doc structure

	
run(host='localhost', port=1234, ssl_context=None)

	Launch the server. Will run forever accepting connections until interrupted.

Parameters:

	host: The host to listen on

	port: The port to listen on

	ssl_context: The SSL context passed to asyncio

	
class grole.Request

	Bases: object

Represents a single HTTP request

The following members are populated with the request details:

	method: The request method

	location: The request location as it is sent

	path: The unescaped path part of the location

	query: The query string part of the location (if present)

	version: The request version, e.g. HTTP/1.1

	headers: Dictionary of headers from the request

	data: Raw data from the request body

	match: The re.MatchObject from the successful path matching

	
body()

	Decodes body as string

	
json()

	Decodes json object from the body

	
class grole.Response(data=None, code=200, reason='OK', headers={}, version='HTTP/1.1')

	Bases: object

Represents a single HTTP response

	
__init__(data=None, code=200, reason='OK', headers={}, version='HTTP/1.1')

	Create a response

Parameters:

	data: Object to send e.g. ResponseBody / ResponseJSON.

	code: The response code, default 200

	reason: The response reason, default OK

	version: The response version, default HTTP/1.1

	headers: Dictionary of response headers, default is a Server header and those from the response body

Note, data is intelligently converted to an appropriate ResponseXYZ object depending on it’s type.

	
class grole.ResponseBody(data=b'', content_type='text/plain')

	Bases: object

Response body from a byte string

	
__init__(data=b'', content_type='text/plain')

	Initialise object, data is the data to send

Parameters:

	data: Byte data to send

	content_type: Value of Content-Type header, default text/plain

	
class grole.ResponseFile(filename, content_type=None)

	Bases: grole.ResponseBody

Respond with a file

Content type is guessed if not provided

	
__init__(filename, content_type=None)

	Initialise object, data is the data to send

Parameters:

	filename: Name of file to read and send

	content_type: Value of Content-Type header, default is to guess from file extension

	
class grole.ResponseJSON(data='', content_type='application/json')

	Bases: grole.ResponseString

Response body encoded in json

	
__init__(data='', content_type='application/json')

	Initialise object, data is the data to send

Parameters:

	data: Object to encode as json for sending

	content_type: Value of Content-Type header, default application/json

	
class grole.ResponseString(data='', content_type='text/html')

	Bases: grole.ResponseBody

Response body from a string

	
__init__(data='', content_type='text/html')

	Initialise object, data is the data to send

Parameters:

	data: String data to send

	content_type: Value of Content-Type header, default text/plain

	
grole.main(args=['-T', '-b', 'epub', '-d', '_build/doctrees-epub', '-D', 'language=en', '.', '_build/epub'])

	Run Grole static file server

	
grole.parse_args(args=['-T', '-b', 'epub', '-d', '_build/doctrees-epub', '-D', 'language=en', '.', '_build/epub'])

	Parse command line arguments for Grole server running as static file server

	
grole.serve_doc(app, url)

	Serve API documentation extracted from request handler docstrings

	Parameters:

	
	app: Grole application object

	url: URL to serve at

	
grole.serve_static(app, base_url, base_path, index=False)

	Serve a directory statically

Parameters:

	app: Grole application object

	base_url: Base URL to serve from, e.g. /static

	base_path: Base path to look for files in

	index: Provide simple directory indexes if True

 Python Module Index

 g

 		 	

 		
 g	

 	
 	
 grole	

Index

 _
 | B
 | G
 | J
 | M
 | P
 | R
 | S

_

 	
 	__init__() (grole.Grole method)

 	(grole.Response method)

 	(grole.ResponseBody method)

 	(grole.ResponseFile method)

 	(grole.ResponseJSON method)

 	(grole.ResponseString method)

B

 	
 	body() (grole.Request method)

G

 	
 	Grole (class in grole)

 	
 	grole (module), [1]

J

 	
 	json() (grole.Request method)

M

 	
 	main() (in module grole)

P

 	
 	parse_args() (in module grole)

R

 	
 	Request (class in grole)

 	Response (class in grole)

 	ResponseBody (class in grole)

 	ResponseFile (class in grole)

 	
 	ResponseJSON (class in grole)

 	ResponseString (class in grole)

 	route() (grole.Grole method)

 	run() (grole.Grole method)

S

 	
 	serve_doc() (in module grole)

 	
 	serve_static() (in module grole)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Grole’s documentation!

 		
 Install

 		
 Tutorial

 		
 Getting started

 		
 Registering routes

 		
 Handling requests

 		
 Responding

 		
 Helpers

 		
 Examples

 		
 Grole API

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

